Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects: Volume 1 ; 1:1787-1809, 2022.
Article in English | Scopus | ID: covidwho-20235524

ABSTRACT

Breast cancer is the most commonly diagnosed cancer globally and is among the leading causes of cancer deaths worldwide. Breast cancer mortality rates are increasing due to delays in diagnosis, prognosis, and treatment caused by the coronavirus disease 2019 (COVID-19) pandemic. Identification and validation of blood-based breast cancer biomarkers for early detection is a top priority worldwide. MicroRNAs (miRNAs) show the potential to serve as breast cancer biomarkers. miRNAs are small, endogenously produced RNAs that regulate growth and development. However, oncogenic miRNAs also play a major role in tumor growth and can alter the tumor microenvironment (TME) in favor of cancer metastasis. The TME represents a complex network of diverse cancerous and noncancerous cell types, secretory proteins, growth factors, and miRNAs. Complex interactions within the TME can promote cancer progression and metastasis via multiple mechanisms, including oxidative stress, hypoxia, angiogenesis, lymphangiogenesis, and cancer stem cell regulation. Here, we decipher the mechanisms of miRNA regulating the TME, intending to use that knowledge to identify miRNAs as therapeutic targets in breast cancer and use miRNAs as blood-based biomarkers. © Springer Nature Singapore Pte Ltd. 2022.

2.
Coronaviruses ; 3(5):4-13, 2022.
Article in English | EMBASE | ID: covidwho-2275597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogenic coronavirus that emerged in late 2019, resulting in coronavirus disease (COVID-19). COVID-19 can be potentially fatal among a certain group of patients. Older age and underlying medical illness are the major risk factors for COVID-19-related fatal respiratory dysfunction. The reason for the pathogenicity of COVID-19 in the older age group remains unclear. Factors, such as coagulopathy, cytokine storm, metabolic disrup-tion, and impaired T cell function, may worsen the symptoms of the disease. Recent literature has indicat-ed that viral infections are particularly associated with a high degree of oxidative stress and an imbalance of antioxidant response. Although pharmacological management has taken its place in reducing the severity of COVID-19, the antioxidants can serve as an adjunct therapy to protect an individual from oxidative damage triggered by SARS-CoV-2 infection. In general, antioxidant enzymes counteract free radicals and prevent their formation. The exact functional role of antioxidant supplements in reducing disease symptoms of SARS-CoV-2 infection remains mostly unknown. In this review, the functional role of natural antioxidants in SARS-CoV-2 infection management is discussed in brief.Copyright © 2022 Bentham Science Publishers.

3.
Antioxidants (Basel) ; 11(10)2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2065678

ABSTRACT

BACKGROUND: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. AIM OF THE STUDY: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. METHODS: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. RESULTS: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. CONCLUSIONS: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.

4.
Microbiol Insights ; 15: 11786361221096651, 2022.
Article in English | MEDLINE | ID: covidwho-1846716

ABSTRACT

In addition to the ongoing global problem of healthcare-acquired infections, the COVID-19 pandemic continues to pose a serious threat to the health of the global population. This unprecedented pandemic situation has reinforced the need for the development of technologies that can curb the transmission of viruses among human beings and help to control the infection. Existing disinfection techniques using either ultraviolet light or harsh chemicals pose safety risks and are not suitable for use in the presence of humans. Thus, the need for a safe and effective disinfection technique that can be used in the presence of humans to control viral transmission is evident. A technique that can continuously disinfect air and surfaces in indoor environments, where the chances of viral transmission are high, can be an indispensable tool to fight such a pandemic. The Airlens Minus Corona (AMC) device provided by Persapien Innovations has been developed to achieve this goal. In this study, the antiviral functionality and biocompatibility of AMC were evaluated. Activated water mist (AWM) generated from this device was tested in vitro and in vivo for its toxicity to cell lines and in animal model. The AWM was found to be non-cytotoxic to L-929 cell lines and had no sign of clinical toxicity in an animal model (rabbit). This device was further used to inactivate animal viruses and bacteriophages. The AWM was found to be effective in the complete inactivation of influenza A H1N1 virus within 5 minutes of direct treatment. This device was also found to be effective in inactivating >90% of bacteriophage particles.

5.
J Zhejiang Univ Sci B ; 23(2): 102-122, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1706587

ABSTRACT

Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Hydrogen/therapeutic use , Lung Diseases/therapy , Acute Lung Injury , Aging , Animals , Anti-Inflammatory Agents , Antioxidants/chemistry , Asthma/therapy , Autophagy , Humans , Hypertension, Pulmonary/therapy , Inflammation , Lung Neoplasms/therapy , Mice , Oxidative Stress , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Fibrosis/therapy , Pyroptosis , Reactive Oxygen Species , COVID-19 Drug Treatment
6.
Adv Inorg Chem ; 79: 65-103, 2022.
Article in English | MEDLINE | ID: covidwho-1650200

ABSTRACT

Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.

7.
Free Radic Biol Med ; 177: 189-200, 2021 12.
Article in English | MEDLINE | ID: covidwho-1466351

ABSTRACT

As hypoxia is a major driver for the pathophysiology of COVID-19, it is crucial to characterize the hypoxic response at the cellular and molecular levels. In order to augment drug repurposing with the identification of appropriate molecular targets, investigations on therapeutics preventing hypoxic cell damage is required. In this work, we propose a hypoxia model based on alveolar lung epithelial cells line using chemical inducer, CoCl2 that can be used for testing calcium channel blockers (CCBs). Since recent studies suggested that CCBs may reduce the infectivity of SARS-Cov-2, we specifically select FDA approved calcium channel blocker, nifedipine for the study. First, we examined hypoxia-induced cell morphology and found a significant increase in cytosolic calcium levels, mitochondrial calcium overload as well as ROS production in hypoxic A549 cells. Secondly, we demonstrate the protective behaviour of nifedipine for cells that are already subjected to hypoxia through measurement of cell viability as well as 4D imaging of cellular morphology and nuclear condensation. Thirdly, we show that the protective effect of nifedipine is achieved through the reduction of cytosolic calcium, mitochondrial calcium, and ROS generation. Overall, we outline a framework for quantitative analysis of mitochondrial calcium and ROS using 3D imaging in laser scanning confocal microscopy and the open-source image analysis platform ImageJ. The proposed pipeline was used to visualize mitochondrial calcium and ROS level in individual cells that provide an understanding of molecular targets. Our findings suggest that the therapeutic value of nifedipine may potentially be evaluated in the context of COVID-19 therapeutic trials.


Subject(s)
COVID-19 , Nifedipine , A549 Cells , Calcium , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Cell Death , Humans , Hypoxia/drug therapy , Nifedipine/pharmacology , SARS-CoV-2 , Superoxides
8.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1374279

ABSTRACT

Major findings of the pilot study involving 21 critically ill patients during the week after admission to the critical care unit specialized for COVID-19 are presented. Fourteen patients have recovered, while seven passed away. There were no differences between them in respect to clinical or laboratory parameters monitored. However, protein adducts of the lipid peroxidation product 4-hydroxynonenal (HNE) were higher in the plasma of the deceased patients, while total antioxidant capacity was below the detection limit for the majority of sera samples in both groups. Moreover, levels of the HNE-protein adducts were constant in the plasma of the deceased patients, while in survivors, they have shown prominent and dynamic variations, suggesting that survivors had active oxidative stress response mechanisms reacting to COVID-19 aggression, which were not efficient in patients who died. Immunohistochemistry revealed the abundant presence of HNE-protein adducts in the lungs of deceased patients indicating that HNE is associated with the lethal outcome. It seems that HNE was spreading from the blood vessels more than being a consequence of pneumonia. Due to the limitations of the relatively small number of patients involved in this study, further research on HNE and antioxidants is needed. This might allow a better understanding of COVID-19 and options for utilizing antioxidants by personalized, integrative biomedicine approach to prevent the onset of HNE-mediated vitious circle of lipid peroxidation in patients with aggressive inflammatory diseases.

9.
DNA Repair (Amst) ; 106: 103180, 2021 10.
Article in English | MEDLINE | ID: covidwho-1313048

ABSTRACT

Since the early stages of the pandemic, hydroxychloroquine (HCQ), a widely used drug with good safety profile in clinic, has come to the forefront of research on drug repurposing for COVID-19 treatment/prevention. Despite the decades-long use of HCQ in the treatment of diseases, such as malaria and autoimmune disorders, the exact mechanisms of action of this drug are only beginning to be understood. To date, no data are available on the genotoxic potential of HCQ in vitro or in vivo. The present study is the first investigation of the DNA damaging- and mutagenic effects of HCQ in mammalian cells in vitro, at concentrations that are comparable to clinically achievable doses in patient populations. We demonstrate significant induction of a representative oxidative DNA damage (8-oxodG) in primary mouse embryonic fibroblasts (MEFs) treated with HCQ at 5 and 25 µM concentrations (P = 0.020 and P = 0.029, respectively), as determined by enzyme-linked immunosorbent assay. Furthermore, we show significant mutagenicity of HCQ, manifest as 2.2- and 1.8-fold increases in relative cII mutant frequency in primary and spontaneously immortalized Big Blue® MEFs, respectively, treated with 25 µM dose of this drug (P = 0.005 and P = 0.012, respectively). The observed genotoxic effects of HCQ in vitro, achievable at clinically relevant doses, are novel and important, and may have significant implications for safety monitoring in patient populations. Given the substantial number of the world's population receiving HCQ for the treatment of various chronic diseases or in the context of clinical trials for COVID-19, our findings warrant further investigations into the biological consequences of therapeutic/preventive use of this drug.


Subject(s)
Hydroxychloroquine/pharmacology , Mutation/drug effects , Oxidative Stress/drug effects , Animals , Antiviral Agents/pharmacology , Drug Repositioning/methods , Fibroblasts/drug effects , Fibroblasts/virology , Mammals/virology , Mice , Mice, Inbred C57BL , Pandemics/prevention & control , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
10.
Materials (Basel) ; 14(11)2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1266755

ABSTRACT

Two highly efficient commercial organic photosensitizers-azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)-were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV-Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.

11.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: covidwho-1011560

ABSTRACT

The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.


Subject(s)
Homeostasis , Inflammation/physiopathology , Mitochondria/physiology , Muscle, Smooth/physiology , Organelle Biogenesis , Protein Unfolding , Unfolded Protein Response , Animals , Humans , Muscle, Smooth/cytology , Oxidative Stress , Oxygen Consumption , Tumor Necrosis Factor-alpha/metabolism
12.
Eur J Pharm Sci ; 153: 105465, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-639701

ABSTRACT

COVID-19, is a disease resulting from the SARS-CoV-2 global pandemic. Due to the current global emergency and the length of time required to develop specific antiviral agent(s) and a vaccine for SARS-CoV-2, the world health organization (WHO) adopted the strategy of repurposing existing medications to treat COVID-19. Iron oxide nanoparticles (IONPs) were previously approved by the US food and drug administration (FDA) for anemia treatment and studies have also demonstrated its antiviral activity in vitro. Therefore, we performed a docking study to explore the interaction of IONPs (Fe2O3 and Fe3O4) with the spike protein receptor binding domain (S1-RBD) of SARS-CoV-2 that is required for virus attachment to the host cell receptors. A similar docking analysis was also performed with hepatitis C virus (HCV) glycoproteins E1 and E2. These studies revealed that both Fe2O3 and Fe3O4 interacted efficiently with the SARS-CoV-2 S1-RBD and to HCV glycoproteins, E1 and E2. Fe3O4 formed a more stable complex with S1-RBD whereas Fe2O3 favored HCV E1 and E2. These interactions of IONPs are expected to be associated with viral proteins conformational changes and hence, viral inactivation. Therefore, we recommend FDA-approved-IONPs to proceed for COVID-19 treatment clinical trials.


Subject(s)
Coronavirus Infections/drug therapy , Ferric Compounds/therapeutic use , Metal Nanoparticles/therapeutic use , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , COVID-19 , Drug Approval , Drug Repositioning , Humans , Pandemics , Protein Conformation , Spike Glycoprotein, Coronavirus/drug effects , United States , United States Food and Drug Administration , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL